716 research outputs found

    Lyman Alpha Emitter Evolution in the Reionization Epoch

    Full text link
    Combining cosmological SPH simulations with a previously developed Lyman Alpha production/transmission model and the Early Reionization Model (ERM, reionization ends at redshift z~7), we obtain Lyman Alpha and UV Luminosity Functions (LFs) for Lyman Alpha Emitters (LAEs) for redshifts between 5.7 and 7.6. Matching model results to observations at z~5.7 requires escape fractions of Lyman Alpha, f_alpha=0.3, and UV (non-ionizing) continuum photons, f_c=0.22, corresponding to a color excess, E(B-V)=0.15. We find that (i) f_c increases towards higher redshifts, due the decreasing mean dust content of galaxies, (ii) the evolution of f_alpha/f_c hints at the dust content of the ISM becoming progressively inhomogeneous/clumped with decreasing redshift. The clustering photoionization boost is important during the initial reionization phases but has little effect on the Lyman Alpha LF for a highly ionized IGM. Halo (stellar) masses are in the range 10.0 < \log M_h < 11.8 (8.1 < \log M_* < 10.4) with M_h \propto M_*^{0.64}. The star formation rates are between 3-120 solar masses per year, mass-weighted mean ages are greater than 20 Myr at all redshifts, while the mean stellar metallicity increases from Z=0.12 to 0.22 solar metallicity from z~7.6 to z~5.7; both age and metallicity positively correlate with stellar mass. The brightest LAEs are all characterized by large star formation rates and intermediate ages (~200 Myr), while objects in the faint end of the Lyman Alpha LF show large age and star formation rate spreads. With no more free parameters, the Spectral Energy Distributions of three LAE at z~5.7 observed by Lai et al. (2007) are well reproduced by an intermediate age (182-220 Myr) stellar population and the above E(B-V) value.Comment: 13 pages, 9 figures, accepted to MNRA

    Quantifying Tensions between CMB and Distance Datasets in Models with Free Curvature or Lensing Amplitude

    Get PDF
    Recent measurements of the Cosmic Microwave Background (CMB) by the Planck Collaboration have produced arguably the most powerful observational evidence in support of the standard model of cosmology, i.e. the spatially flat Λ\LambdaCDM paradigm. In this work, we perform model selection tests to examine whether the base CMB temperature and large scale polarization anisotropy data from Planck 2015 (P15) prefer any of eight commonly used one-parameter model extensions with respect to flat Λ\LambdaCDM. We find a clear preference for models with free curvature, ΩK\Omega_\mathrm{K}, or free amplitude of the CMB lensing potential, ALA_\mathrm{L}. We also further develop statistical tools to measure tension between datasets. We use a Gaussianization scheme to compute tensions directly from the posterior samples using an entropy-based method, the surprise, as well as a calibrated evidence ratio presented here for the first time. We then proceed to investigate the consistency between the base P15~CMB data and six other CMB and distance datasets. In flat Λ\LambdaCDM we find a 4.8σ4.8\sigma tension between the base P15~CMB data and a distance ladder measurement, whereas the former are consistent with the other datasets. In the curved Λ\LambdaCDM model we find significant tensions in most of the cases, arising from the well-known low power of the low-\ell multipoles of the CMB data. In the flat Λ\LambdaCDM +AL+A_\mathrm{L} model, however, all datasets are consistent with the base P15~CMB observations except for the CMB lensing measurement, which remains in significant tension. This tension is driven by the increased power of the CMB lensing potential derived from the base P15~CMB constraints in both models, pointing at either potentially unresolved systematic effects or the need for new physics beyond the standard flat Λ\LambdaCDM model.Comment: 16 pages, 8 figures, 6 table

    Simulating the formation of a proto-cluster at z~2

    Full text link
    We present results from two high-resolution hydrodynamical simulations of proto-cluster regions at z~2.1. The simulations have been compared to observational results for the socalled Spiderweb galaxy system, the core of a putative proto-cluster region at z = 2.16, found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with M200~10^14 h-1 Msun (C1) and a rich cluster with M200~2x10^15 h-1 Msun (C2) at z = 0. The simulated proto-clusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy (BCG) of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared to the observed velocities. We argue that the Spiderweb complex resemble the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing AGN feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.Comment: 6 pages, 4 figures, accepted for publication in MNRAS (Letters

    Properties of the galaxy population in hydrodynamical simulations of clusters

    Get PDF
    We present a study of the galaxy population predicted by hydrodynamical simulations for a set of 19 galaxy clusters based on the GADGET-2 Tree+SPH code. These simulations include gas cooling, star formation, a detailed treatment of stellar evolution and chemical enrichment, as well as SN energy feedback in the form of galactic winds. We compute the spectro-photometric properties of the simulated galaxies. All simulations have been performed for two choices of the stellar initial mass function: a standard Salpeter IMF, and a top-heavier IMF. Several of the observational properties of the galaxy population in nearby clusters are reproduced fairly well by simulations. A Salpeter IMF is successful in accounting for the slope and the normalization of the color-magnitude relation for the bulk of the galaxy population. Simulated clusters have a relation between mass and optical luminosity which generally agrees with observations, both in normalization and slope. We find that galaxies are generally bluer, younger and more star forming in the cluster outskirts, thus reproducing the observational trends. However, simulated clusters have a total number of galaxies which is significantly smaller than the observed one, falling short by about a factor 2-3. Finally, the brightest cluster galaxies are always predicted to be too massive and too blue, when compared to observations, due to gas overcooling in the core cluster regions, even in the presence of a rather efficient SN feedback.Comment: 15 pages, 17 figures, to appear in MNRA

    Struktur bahasa Besoa

    Get PDF
    Buku Struktur Bahasa Besoa ini merupakan salah satu hasil Proyek Penelitian Bahasa dan Sastra Indonesia dan Daerah Sulawesi Tengah tahun 1986 yang pelaksanaannya dipercayakan kepada tim penelitidari Universitas Tadulako. Penelitian struktur bahasa Besoa ini dilaksanakan oleh satu tim peneliti untuk memperoleh data di desa Rarnpo, salah satu desa yang dihuni oleh suku Besoa. Pemilihan desa ini sebagai daerahsampel ditetapkan berdasarkan beberapa pertimbangan guna kepentingan penelitian. Data yang diperoleh berdasarkan langkah-langkah yang telah ditetapkan dalam instrumen penelitian memungkinkan adanya variasi setelah melihat kepentingan data yang ada. Pengolahan data itu dimuat dalam bab-bab yang ada

    Gas cooling in semi-analytic models and SPH simulations: are results consistent?

    Full text link
    We present a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical SPH simulations and by a semi-analytic model (SAM) of galaxy formation. Both models include gas cooling and a simple prescription of star formation, which consists in transforming instantaneously any cold gas available into stars, while neglecting any source of energy feedback. We find that, in general, galaxy populations from SAMs and SPH have similar statistical properties, in agreement with previous studies. However, when comparing galaxies on an object-by-object basis, we find a number of interesting differences: a) the star formation histories of the brightest cluster galaxies (BCGs) from SAM and SPH models differ significantly, with the SPH BCG exhibiting a lower level of star formation activity at low redshift, and a more intense and shorter initial burst of star formation with respect to its SAM counterpart; b) while all stars associated with the BCG were formed in its progenitors in the semi-analytic model used here, this holds true only for half of the final BCG stellar mass in the SPH simulation, the remaining half being contributed by tidal stripping of stars from the diffuse stellar component associated with galaxies accreted on the cluster halo; c) SPH satellites can loose up to 90 per cent of their stellar mass at the time of accretion, due to tidal stripping, a process not included in the semi-analytic model used in this study; d) in the SPH simulation, significant cooling occurs on the most massive satellite galaxies and this lasts for up to 1 Gyr after accretion. This physical process is not included in the semi-analytic model used in our study, as well as in most of the models discussed in the recent literature.Comment: Revised version submitted to MNRAS, 15 pages, 9 figures. A High-resolution version of the paper and figures can be found at this http://adlibitum.oats.inaf.it/saro/SAM2/paper.pd

    Stellar Mass to Halo Mass Scaling Relation for X-ray Selected Low Mass Galaxy Clusters and Groups out to Redshift z1z\approx1

    Full text link
    We present the stellar mass-halo mass scaling relation for 46 X-ray selected low-mass clusters or groups detected in the XMM-BCS survey with masses 2×1013MM5002.5×1014M2\times10^{13}M_{\odot}\lesssim M_{500}\lesssim2.5\times10^{14}M_{\odot} at redshift 0.1z1.020.1\le z \le1.02. The cluster binding masses M500M_{500} are inferred from the measured X-ray luminosities \Lx, while the stellar masses MM_{\star} of the galaxy populations are estimated using near-infrared imaging from the SSDF survey and optical imaging from the BCS survey. With the measured \Lx\ and stellar mass MM_{\star}, we determine the best fit stellar mass-halo mass relation, accounting for selection effects, measurement uncertainties and the intrinsic scatter in the scaling relation. The resulting mass trend is MM5000.69±0.15M_{\star}\propto M_{500}^{0.69\pm0.15}, the intrinsic (log-normal) scatter is σlnMM500=0.360.06+0.07\sigma_{\ln M_{\star}|M_{500}}=0.36^{+0.07}_{-0.06}, and there is no significant redshift trend M(1+z)0.04±0.47M_{\star}\propto (1+z)^{-0.04\pm0.47}, although the uncertainties are still large. We also examine MM_{\star} within a fixed projected radius of 0.50.5~Mpc, showing that it provides a cluster binding mass proxy with intrinsic scatter of 93%\approx93\% (1σ\sigma in M500M_{500}). We compare our M=M(M500,z)M_{\star}=M_{\star}(M_{500}, z) scaling relation from the XMM-BCS clusters with samples of massive, SZE-selected clusters (M5006×1014MM_{500}\approx6\times10^{14}M_{\odot}) and low mass NIR-selected clusters (M5001014MM_{500}\approx10^{14}M_{\odot}) at redshift 0.6z1.30.6\lesssim z \lesssim1.3. After correcting for the known mass measurement systematics in the compared samples, we find that the scaling relation is in good agreement with the high redshift samples, suggesting that for both groups and clusters the stellar content of the galaxy populations within R500R_{500} depends strongly on mass but only weakly on redshift out to z1z\approx1.Comment: 15 pages, 10 figures. Accepted for publication in MNRA

    Struktur bahasa Besoa

    Get PDF
    Buku Struktur Bahasa Besoa ini merupakan salah satu hasil Proyek Penelitian Bahasa dan Sastra Indonesia dan Daerah Sulawesi Tengah tahun 1986 yang pelaksanaannya dipercayakan kepada tim peneliti dari Universitas Tadulako. Untuk itu, kami ingin menyatakan penghargaan dan ucapan terima kasih kepada Pemimpin Proyek Penelitian Bahasa dan Sastra Indonesia dan Darah Sulawesi Tengah tahun 1986 beserta stafnya, dan para peneliti, yaitu Ahmad Saro, Hanafi Sulaiman, Abdillah A. Rahim, Sudarmin Kuruda
    corecore